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LLMs today: How good are they?



Single prompt at its max



Shiny, but…
https://codestub.ai/stub/stub-ai/d406b100
-d3b0-51b8-b72f-ae6a8dd795ca

https://codestub.ai/stub/stub-ai/d406b100-d3b0-51b8-b72f-ae6a8dd795ca
https://codestub.ai/stub/stub-ai/d406b100-d3b0-51b8-b72f-ae6a8dd795ca


Working Memory of Large Language Models  
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Working Memory - limitations

Measured in tokens (a common word, a syllable or a character)

4K - 32K (GPT-4) - 128K (GPT-4 turbo)

Need to fit all of:

● Sources needed to solve the task
● Task description
● Output format description
● Project-specific / non-functional requirements



GPT-4 128K information retrieval accuracy from the prompt

source: https://twitter.com/GregKamradt/status/1722386725635580292

https://twitter.com/GregKamradt/status/1722386725635580292


Overcoming Working Memory Limitations in Code Generation

1. Repo Map
○ Only provide headers / names from the full source
○ Partial solution with possibly large footprint
○ Files to be edited or understood must be still shown

2. Vector Database
○ Embed (chunks of) source files
○ Retrieve based on task description
○ Problems:

■ Unrelated files may be needed
■ Providing too much files creates “cognitive load” for the model and extra 

cost
(A single 128K call to GPT costs $1.28)



Overcoming Working Memory Limitations in Code Generation

3. Manual file selection

○ With Vector DB recommendations + search
○ Minimal set of files creates context, possibly allowing the prompt to be less precise.
○ Developer needs to know the source deeper (and that’s good!)

https://github.com/tisztamo/Junior/blob/main/prompt/history/2023/09/06/13%3A26_Fix%20getRepoInfo%20package.json%20issue/prompt.yaml

https://github.com/tisztamo/Junior/blob/main/prompt/history/2023/09/06/13%3A26_Fix%20getRepoInfo%20package.json%20issue/prompt.yaml


“Cognitive Load” the models can bear

● Number of distinct commands
○ Junior self-development: 13 fixed + task

● How far the model must go from its training knowledge
○ E.g. coding in less popular frameworks like Solid.js

● Discrepancies between commanded format and the current state
○ E.g. After changing code style: "JavaScript files should only export named entities, do not use 

default exports" - cannot be fixed locally

○ Possible solution: Do not command style, leave the code as generated.



Minimizing “Cognitive Load”

● Selecting an output format the model can handle with ease
○ The lightest is the normal chat with code blocks, only extended with filenames - 

problematic to parse
○ Fine-tuning may help with more complex formats
○ “Function calls” are not so reliable yet
○ Generating diffs is just hard

■ diffs + fuzzy apply is a way
■ Always asking for full files is another

● Prompt engineering
○ Provide Example Output
○ Mark prompt sections clearly (markdown works)
○ …



Minimizing “Cognitive Load” as a user (app developer)

● Prefer small files
● Clearly define requirements

○ Learn prompt engineering and the specific model
○ Avoid “it”, “that” etc. when referring to a previously mentioned concept.
○ Provide only the needed files

● Baby Steps
○ Avoid listing multiple tasks in the same prompt, except for trivial ones.
○ Decompose problems to smaller units and define them in separate prompts.



Approaches to LLM Coding 1: One Prompt Generators

● “Build an Entire App with a Single Prompt”
● Automated Waterfall
● e.g.: GPT-Engineer

○ https://github.com/AntonOsika/gpt-engineer

https://github.com/AntonOsika/gpt-engineer


● Focus on code
○ Typically VS Code based
○ e.g.: Rift: https://github.com/morph-labs/rift/blob/pranav/dev/assets/code-edit.gif
○ GitHub Copilot

● Focus on requirements 
○ Typically GitHub based
○ e.g.: Sweep: https://sweep.dev/

● Focus on Human-AI interaction
○ Own UI or CLI
○ aider: https://aider.chat
○ Junior: https://aijunior.dev
○ Copilot Workspace (research prototype from GitHub)

Approaches to LLM Coding 2: Iterative systems

https://github.com/morph-labs/rift/blob/pranav/dev/assets/code-edit.gif
https://sweep.dev/
https://aider.chat
https://aijunior.dev
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https://chat.openai.com/share/b6c216aa-8f2c-4aae-91fe-9973da6bf01a

https://chat.openai.com/share/b6c216aa-8f2c-4aae-91fe-9973da6bf01a

