
Language Models
in

Programming
Schäffer Krisztián
aijunior.dev
github.com/tisztamo
linkedin.com/in/tisztamo/

LLMs today: How good are they?

Single prompt at its max

Shiny, but…
https://codestub.ai/stub/stub-ai/d406b100
-d3b0-51b8-b72f-ae6a8dd795ca

https://codestub.ai/stub/stub-ai/d406b100-d3b0-51b8-b72f-ae6a8dd795ca
https://codestub.ai/stub/stub-ai/d406b100-d3b0-51b8-b72f-ae6a8dd795ca

Working Memory of Large Language Models

LLM context window is the

LLM context window is the model's

LLM context window is the model's view

 context window is the model's view of

 window is the model's view of our

 is the model's view of our conversation

 universe

 collective consciousness

 health

Simplified

Working Memory - limitations

Measured in tokens (a common word, a syllable or a character)

4K - 32K (GPT-4) - 128K (GPT-4 turbo)

Need to fit all of:

● Sources needed to solve the task
● Task description
● Output format description
● Project-specific / non-functional requirements

GPT-4 128K information retrieval accuracy from the prompt

source: https://twitter.com/GregKamradt/status/1722386725635580292

https://twitter.com/GregKamradt/status/1722386725635580292

Overcoming Working Memory Limitations in Code Generation

1. Repo Map
○ Only provide headers / names from the full source
○ Partial solution with possibly large footprint
○ Files to be edited or understood must be still shown

2. Vector Database
○ Embed (chunks of) source files
○ Retrieve based on task description
○ Problems:

■ Unrelated files may be needed
■ Providing too much files creates “cognitive load” for the model and extra

cost
(A single 128K call to GPT costs $1.28)

Overcoming Working Memory Limitations in Code Generation

3. Manual file selection

○ With Vector DB recommendations + search
○ Minimal set of files creates context, possibly allowing the prompt to be less precise.
○ Developer needs to know the source deeper (and that’s good!)

https://github.com/tisztamo/Junior/blob/main/prompt/history/2023/09/06/13%3A26_Fix%20getRepoInfo%20package.json%20issue/prompt.yaml

https://github.com/tisztamo/Junior/blob/main/prompt/history/2023/09/06/13%3A26_Fix%20getRepoInfo%20package.json%20issue/prompt.yaml

“Cognitive Load” the models can bear

● Number of distinct commands
○ Junior self-development: 13 fixed + task

● How far the model must go from its training knowledge
○ E.g. coding in less popular frameworks like Solid.js

● Discrepancies between commanded format and the current state
○ E.g. After changing code style: "JavaScript files should only export named entities, do not use

default exports" - cannot be fixed locally

○ Possible solution: Do not command style, leave the code as generated.

Minimizing “Cognitive Load”

● Selecting an output format the model can handle with ease
○ The lightest is the normal chat with code blocks, only extended with filenames -

problematic to parse
○ Fine-tuning may help with more complex formats
○ “Function calls” are not so reliable yet
○ Generating diffs is just hard

■ diffs + fuzzy apply is a way
■ Always asking for full files is another

● Prompt engineering
○ Provide Example Output
○ Mark prompt sections clearly (markdown works)
○ …

Minimizing “Cognitive Load” as a user (app developer)

● Prefer small files
● Clearly define requirements

○ Learn prompt engineering and the specific model
○ Avoid “it”, “that” etc. when referring to a previously mentioned concept.
○ Provide only the needed files

● Baby Steps
○ Avoid listing multiple tasks in the same prompt, except for trivial ones.
○ Decompose problems to smaller units and define them in separate prompts.

Approaches to LLM Coding 1: One Prompt Generators

● “Build an Entire App with a Single Prompt”
● Automated Waterfall
● e.g.: GPT-Engineer

○ https://github.com/AntonOsika/gpt-engineer

https://github.com/AntonOsika/gpt-engineer

● Focus on code
○ Typically VS Code based
○ e.g.: Rift: https://github.com/morph-labs/rift/blob/pranav/dev/assets/code-edit.gif
○ GitHub Copilot

● Focus on requirements
○ Typically GitHub based
○ e.g.: Sweep: https://sweep.dev/

● Focus on Human-AI interaction
○ Own UI or CLI
○ aider: https://aider.chat
○ Junior: https://aijunior.dev
○ Copilot Workspace (research prototype from GitHub)

Approaches to LLM Coding 2: Iterative systems

https://github.com/morph-labs/rift/blob/pranav/dev/assets/code-edit.gif
https://sweep.dev/
https://aider.chat
https://aijunior.dev

Junior Demo,
Q & A

Schäffer Krisztián

linkedin.com/in/tisztamo/
aijunior.dev
github.com/tisztamo

https://hu.linkedin.com/in/tisztamo
https://www.aijunior.dev/
https://github.com/tisztamo

https://chat.openai.com/share/b6c216aa-8f2c-4aae-91fe-9973da6bf01a

https://chat.openai.com/share/b6c216aa-8f2c-4aae-91fe-9973da6bf01a

